Viadeo Twitter Google Bookmarks ! Facebook Digg del.icio.us MySpace Yahoo MyWeb Blinklist Netvouz Reddit Simpy StumbleUpon Bookmarks Windows Live Favorites 
Logo Documentation Qt ·  Page d'accueil  ·  Toutes les classes  ·  Classes principales  ·  Annotées  ·  Classes groupées  ·  Fonctions  · 

Internationalization with Qt

The internationalization of an application is the process of making the application usable by people in countries other than one's own.

In some cases internationalization is simple, for example, making a US application accessible to Australian or British users may require little more than a few spelling corrections. But to make a US application usable by Japanese users, or a Korean application usable by German users, will require that the software operate not only in different languages, but use different input techniques, character encodings and presentation conventions.

Qt tries to make internationalization as painless as possible for developers. All input widgets and text drawing methods in Qt offer built-in support for all supported languages. The built-in font engine is capable of correctly and attractively rendering text that contains characters from a variety of different writing systems at the same time.

Qt supports most languages in use today, in particular:

  • All East Asian languages (Chinese, Japanese and Korean)
  • All Western languages (using Latin script)
  • Arabic
  • Cyrillic languages (Russian)
  • Greek
  • Hebrew
  • Thai and Lao
  • All scripts in Unicode 3.2 that do not require special processing

On Windows NT/2000/XP and Unix/X11 with Xft (client side font support) the following languages are also supported:

  • Bengali
  • Devanagari
  • Divehi (Win XP only)
  • Gujarati
  • Gurmukhi
  • Kannada
  • Khmer
  • Malayalam (X11 only)
  • Syriac
  • Tamil
  • Telugu
  • Thaana
  • Tibetan (X11 only)

Many of these writing systems exhibit special features:

  • Special line breaking behavior. Some of the Asian languages are written without spaces between words. Line breaking can occur either after every character (with exceptions) as in Chinese, Japanese and Korean, or after logical word boundaries as in Thai.

  • Bidirectional writing. Arabic and Hebrew are written from right to left, except for numbers and embedded English text which is written left to right. The exact behavior is defined in the Unicode Technical Report #9.

  • Non spacing or diacritical marks (accents or umlauts in European languages). Some languages such as Vietnamese make extensive use of these marks and some characters can have more than one mark at the same time to clarify pronunciation.

  • Ligatures. In special contexts, some pairs of characters get replaced by a combined glyph forming a ligature. Common examples are the fl and fi ligatures used in typesetting US and European books.

Qt tries to take care of all the special features listed above. You usually don't have to worry about these features so long as you use Qt's input widgets (e.g. QLineEdit, QTextEdit, and derived classes) and Qt's display widgets (e.g. QLabel).

Support for these writing systems is transparent to the programmer and completely encapsulated in Qt's text engine. This means that you don't need to have any knowledge about the writing system used in a particular language, except for the following small points:

  • QPainter::drawText( int x, int y, const QString &str ) will always draw the string with it's left edge at the position specified with the x, y parameters. This will usually give you left aligned strings. Arabic and Hebrew application strings are usually right aligned, so for these languages use the version of drawText() that takes a QRect since this will align in accordance with the language.

  • When you write your own text input controls, use QFontMetrics::charWidth() to determine the width of a character in a string. In some languages (e.g. Arabic or languages from the Indian subcontinent), the width and shape of a glyph changes depending on the surrounding characters. Writing input controls usually requires a certain knowledge of the scripts it is going to be used in. Usually the easiest way is to subclass QLineEdit or QTextEdit.

The following sections give some information on the status of the internationalization (i18n) support in Qt.

See also the Qt Linguist manual.

Step by Step

Writing multi-platform international software with Qt is a gentle, incremental process. Your software can become internationalized in the following stages:

Use QString for all User-visible Text

Since QString uses the Unicode encoding internally, every language in the world can be processed transparently using familiar text processing operations. Also, since all Qt functions that present text to the user take a QString as a parameter, there is no char* to QString conversion overhead.

Strings that are in "programmer space" (such as QObject names and file format texts) need not use QString; the traditional char* or the QCString class will suffice.

You're unlikely to notice that you are using Unicode; QString, and QChar are just like easier versions of the crude const char* and char from traditional C.

Use tr() for all Literal Text

Wherever your program uses "quoted text" for text that will be presented to the user, ensure that it is processed by the QApplication::translate() function. Essentially all that is necessary to achieve this is to use QObject::tr(). For example, assuming the LoginWidget is a subclass of QWidget:

    LoginWidget::LoginWidget()
    {
        QLabel *label = new QLabel( tr("Password:"), this );
        ...
    }

This accounts for 99% of the user-visible strings you're likely to write.

If the quoted text is not in a member function of a QObject subclass, use either the tr() function of an appropriate class, or the QApplication::translate() function directly:

    void some_global_function( LoginWidget *logwid )
    {
        QLabel *label = new QLabel(
                LoginWidget::tr("Password:"), logwid );
    }

    void same_global_function( LoginWidget *logwid )
    {
        QLabel *label = new QLabel(
                qApp->translate("LoginWidget", "Password:"),
                logwid );
    }

If you need to have translatable text completely outside a function, there are two macros to help: QT_TR_NOOP() and QT_TRANSLATE_NOOP(). They merely mark the text for extraction by the lupdate utility described below. The macros expand to just the text (without the context).

Example of QT_TR_NOOP():

    QString FriendlyConversation::greeting( int greet_type )
    {
        static const char* greeting_strings[] = {
            QT_TR_NOOP( "Hello" ),
            QT_TR_NOOP( "Goodbye" )
        };
        return tr( greeting_strings[greet_type] );
    }

Example of QT_TRANSLATE_NOOP():

    static const char* greeting_strings[] = {
        QT_TRANSLATE_NOOP( "FriendlyConversation", "Hello" ),
        QT_TRANSLATE_NOOP( "FriendlyConversation", "Goodbye" )
    };

    QString FriendlyConversation::greeting( int greet_type )
    {
        return tr( greeting_strings[greet_type] );
    }

    QString global_greeting( int greet_type )
    {
        return qApp->translate( "FriendlyConversation",
                                greeting_strings[greet_type] );
    }

If you disable the const char* to QString automatic conversion by compiling your software with the macro QT_NO_CAST_ASCII defined, you'll be very likely to catch any strings you are missing. See QString::fromLatin1() for more information. Disabling the conversion can make programming a bit cumbersome.

If your source language uses characters outside Latin-1, you might find QObject::trUtf8() more convenient than QObject::tr(), as tr() depends on the QApplication::defaultCodec(), which makes it more fragile than QObject::trUtf8().

Use QKeySequence() for Accelerator Values

Accelerator values such as Ctrl+Q or Alt+F need to be translated too. If you hardcode CTRL+Key_Q for "Quit" in your application, translators won't be able to override it. The correct idiom is

    QPopupMenu *file = new QPopupMenu( this );
    file->insertItem( tr("&Quit"), this, SLOT(quit()),
                      QKeySequence(tr("Ctrl+Q", "File|Quit")) );

Use QString::arg() for Dynamic Text

The QString::arg() functions offer a simple means for substituting arguments:

    void FileCopier::showProgress( int done, int total,
                                   const QString& current_file )
    {
        label.setText( tr("%1 of %2 files copied.\nCopying: %3")
                        .arg(done)
                        .arg(total)
                        .arg(current_file) );
    }

In some languages the order of arguments may need to change, and this can easily be achieved by changing the order of the % arguments. For example:

    QString s1 = "%1 of %2 files copied. Copying: %3";
    QString s2 = "Kopierer nu %3. Av totalt %2 filer er %1 kopiert.";
    
    qDebug( s1.arg(5).arg(10).arg("somefile.txt").ascii() );
    qDebug( s2.arg(5).arg(10).arg("somefile.txt").ascii() );

produces the correct output in English and Norwegian:

5 of 10 files copied. Copying: somefile.txt
Kopierer nu somefile.txt. Av totalt 10 filer er 5 kopiert.

Produce Translations

Once you are using tr() throughout an application, you can start producing translations of the user-visible text in your program.

Qt Linguist's manual provides further information about Qt's translation tools, Qt Linguist, lupdate and lrelease.

Translation of a Qt application is a three-step process:

  1. Run lupdate to extract translatable text from the C++ source code of the Qt application, resulting in a message file for translators (a .ts file). The utility recognizes the tr() construct and the QT_*_NOOP macros described above and produces .ts files (usually one per language).

  2. Provide translations for the source texts in the .ts file, using Qt Linguist. Since .ts files are in XML format, you can also edit them by hand.

  3. Run lrelease to obtain a light-weight message file (a .qm file) from the .ts file, suitable only for end use. Think of the .ts files as "source files", and .qm files as "object files". The translator edits the .ts files, but the users of your application only need the .qm files. Both kinds of files are platform and locale independent.

Typically, you will repeat these steps for every release of your application. The lupdate utility does its best to reuse the translations from previous releases.

Before you run lupdate, you should prepare a project file. Here's an example project file (.pro file):

    HEADERS         = funnydialog.h \
                      wackywidget.h
    SOURCES         = funnydialog.cpp \
                      main.cpp \
                      wackywidget.cpp
    FORMS           = fancybox.ui
    TRANSLATIONS    = superapp_dk.ts \
                      superapp_fi.ts \
                      superapp_no.ts \
                      superapp_se.ts

When you run lupdate or lrelease, you must give the name of the project file as a command-line argument.

In this example, four exotic languages are supported: Danish, Finnish, Norwegian and Swedish. If you use qmake, you usually don't need an extra project file for lupdate; your qmake project file will work fine once you add the TRANSLATIONS entry.

In your application, you must QTranslator::load() the translation files appropriate for the user's language, and install them using QApplication::installTranslator().

If you have been using the old Qt tools (findtr, msg2qm and mergetr), you can use qm2ts to convert your old .qm files.

linguist, lupdate and lrelease are installed in the bin subdirectory of the base directory Qt is installed into. Click Help|Manual in Qt Linguist to access the user's manual; it contains a tutorial to get you started.

While these utilities offer a convenient way to create .qm files, any system that writes .qm files is sufficient. You could make an application that adds translations to a QTranslator with QTranslator::insert() and then writes a .qm file with QTranslator::save(). This way the translations can come from any source you choose.

Qt itself contains over 400 strings that will also need to be translated into the languages that you are targeting. You will find translation files for French and German in $QTDIR/translations as well as a template for translating to other languages. (This directory also contains some additional unsupported translations which may be useful.)

Typically, your application's main() function will look like this:

    int main( int argc, char **argv )
    {
        QApplication app( argc, argv );

        // translation file for Qt
        QTranslator qt( 0 );
        qt.load( QString( "qt_" ) + QTextCodec::locale(), "." );
        app.installTranslator( &qt );

        // translation file for application strings
        QTranslator myapp( 0 );
        myapp.load( QString( "myapp_" ) + QTextCodec::locale(), "." );
        app.installTranslator( &myapp );

        ...

        return app.exec();
    }

Support for Encodings

The QTextCodec class and the facilities in QTextStream make it easy to support many input and output encodings for your users' data. When an application starts, the locale of the machine will determine the 8-bit encoding used when dealing with 8-bit data: such as for font selection, text display, 8-bit text I/O and character input.

The application may occasionally require encodings other than the default local 8-bit encoding. For example, an application in a Cyrillic KOI8-R locale (the de-facto standard locale in Russia) might need to output Cyrillic in the ISO 8859-5 encoding. Code for this would be:

    QString string = ...; // some Unicode text

    QTextCodec* codec = QTextCodec::codecForName( "ISO 8859-5" );
    QCString encoded_string = codec->fromUnicode( string );

    ...; // use encoded_string in 8-bit operations

For converting Unicode to local 8-bit encodings, a shortcut is available: the local8Bit() method of QString returns such 8-bit data. Another useful shortcut is the utf8() method, which returns text in the 8-bit UTF-8 encoding: this perfectly preserves Unicode information while looking like plain US-ASCII if the text is wholly US-ASCII.

For converting the other way, there are the QString::fromUtf8() and QString::fromLocal8Bit() convenience functions, or the general code, demonstrated by this conversion from ISO 8859-5 Cyrillic to Unicode conversion:

    QCString encoded_string = ...; // Some ISO 8859-5 encoded text.

    QTextCodec* codec = QTextCodec::codecForName("ISO 8859-5");
    QString string = codec->toUnicode(encoded_string);

    ...; // Use string in all of Qt's QString operations.

Ideally Unicode I/O should be used as this maximizes the portability of documents between users around the world, but in reality it is useful to support all the appropriate encodings that your users will need to process existing documents. In general, Unicode (UTF-16 or UTF-8) is best for information transferred between arbitrary people, while within a language or national group, a local standard is often more appropriate. The most important encoding to support is the one returned by QTextCodec::codecForLocale(), as this is the one the user is most likely to need for communicating with other people and applications (this is the codec used by local8Bit()).

Qt supports most of the more frequently used encodings natively. For a complete list of supported encodings see the QTextCodec documentation.

In some cases and for less frequently used encodings it may be necessary to write your own QTextCodec subclass. Depending on the urgency, it may be useful to contact Trolltech technical support or ask on the qt-interest mailing list to see if someone else is already working on supporting the encoding. A useful interim measure can be to use the QTextCodec::loadCharmapFile() function to build a data-driven codec, although this approach has a memory and speed penalty, especially with dynamically loaded libraries. For details of writing your own QTextCodec, see the main QTextCodec class documentation.

Localize

Localization is the process of adapting to local conventions, for example presenting dates and times using the locally preferred formats. Such localizations can be accomplished using appropriate tr() strings.

    void Clock::setTime(const QTime& t)
    {
        if ( tr("AMPM") == "AMPM" ) {
            // 12-hour clock
        } else {
            // 24-hour clock
        }
    }

In the example, for the US we would leave the translation of "AMPM" as it is and thereby use the 12-hour clock branch; but in Europe we would translate it as something else (anything else, e.g. "EU") and this will make the code use the 24-hour clock branch.

Localizing images is not recommended. Choose clear icons that are appropriate for all localities, rather than relying on local puns or stretched metaphors.

System Support

Some of the operating systems and windowing systems that Qt runs on only have limited support for Unicode. The level of support available in the underlying system has some influence on the support that Qt can provide on those platforms, although in general Qt applications need not be too concerned with platform-specific limitations.

Unix/X11

  • Locale-oriented fonts and input methods. Qt hides these and provides Unicode input and output.
  • Filesystem conventions such as UTF-8 are under development in some Unix variants. All Qt file functions allow Unicode, but convert filenames to the local 8-bit encoding, as this is the Unix convention (see QFile::setEncodingFunction() to explore alternative encodings).
  • File I/O defaults to the local 8-bit encoding, with Unicode options in QTextStream.

Windows

  • Qt provides full Unicode support, including input methods, fonts, clipboard, drag-and-drop and file names.
  • File I/O defaults to Latin-1, with Unicode options in QTextStream. Note that some Windows programs do not understand big-endian Unicode text files even though that is the order prescribed by the Unicode Standard in the absence of higher-level protocols.
  • Unlike programs written with MFC or plain winlib, Qt programs are portable between Windows 95/98 and Windows NT. You do not need different binaries to support Unicode.

Note about Locales on X11

Many Unix distributions contain only partial support for some locales. For example, if you have a /usr/share/locale/ja_JP.EUC directory, this does not necessarily mean you can display Japanese text; you also need JIS encoded fonts (or Unicode fonts), and the /usr/share/locale/ja_JP.EUC directory needs to be complete. For best results, use complete locales from your system vendor.

Relevant Qt Classes

These classes are relevant to internationalizing Qt applications.

QBig5CodecConversion to and from the Big5 encoding
QEucJpCodecConversion to and from EUC-JP character sets
QEucKrCodecConversion to and from EUC-KR character sets
QGb18030CodecConversion to and from the Chinese GB18030/GBK/GB2312 encoding
QGb2312CodecConversion to and from the Chinese GB2312 encoding
QGbkCodecConversion to and from the Chinese GBK encoding
QHebrewCodecConversion to and from visually ordered Hebrew
QJisCodecConversion to and from JIS character sets
QSjisCodecConversion to and from Shift-JIS
QTextCodecConversion between text encodings
QTextDecoderState-based decoder
QTextEncoderState-based encoder
QTranslatorInternationalization support for text output
QTranslatorMessageTranslator message and its properties
QTsciiCodecConversion to and from the Tamil TSCII encoding

Publicité

Best Of

Actualités les plus lues

Semaine
Mois
Année
  1. « Quelque chose ne va vraiment pas avec les développeurs "modernes" », un développeur à "l'ancienne" critique la multiplication des bibliothèques 82
  2. Apercevoir la troisième dimension ou l'utilisation multithreadée d'OpenGL dans Qt, un article des Qt Quarterly traduit par Guillaume Belz 0
  3. Les développeurs ignorent-ils trop les failles découvertes dans leur code ? Prenez-vous en compte les remarques des autres ? 17
  4. BlackBerry 10 : premières images du prochain OS de RIM qui devrait intégrer des widgets et des tuiles inspirées de Windows Phone 0
  5. Quelles nouveautés de C++11 Visual C++ doit-il rapidement intégrer ? Donnez-nous votre avis 10
  6. Adieu qmake, bienvenue qbs : Qt Building Suite, un outil déclaratif et extensible pour la compilation de projets Qt 17
  7. 2017 : un quinquennat pour une nouvelle version du C++ ? Possible, selon Herb Sutter 6
Page suivante

Le blog Digia au hasard

Logo

Déploiement d'applications Qt Commercial sur les tablettes Windows 8

Le blog Digia est l'endroit privilégié pour la communication sur l'édition commerciale de Qt, où des réponses publiques sont apportées aux questions les plus posées au support. Lire l'article.

Communauté

Ressources

Liens utiles

Contact

  • Vous souhaitez rejoindre la rédaction ou proposer un tutoriel, une traduction, une question... ? Postez dans le forum Contribuez ou contactez-nous par MP ou par email (voir en bas de page).

Qt dans le magazine

Cette page est une traduction d'une page de la documentation de Qt, écrite par Nokia Corporation and/or its subsidiary(-ies). Les éventuels problèmes résultant d'une mauvaise traduction ne sont pas imputables à Nokia. Qt 3.2
Copyright © 2012 Developpez LLC. Tous droits réservés Developpez LLC. Aucune reproduction, même partielle, ne peut être faite de ce site et de l'ensemble de son contenu : textes, documents et images sans l'autorisation expresse de Developpez LLC. Sinon, vous encourez selon la loi jusqu'à 3 ans de prison et jusqu'à 300 000 E de dommages et intérêts. Cette page est déposée à la SACD.
Vous avez déniché une erreur ? Un bug ? Une redirection cassée ? Ou tout autre problème, quel qu'il soit ? Ou bien vous désirez participer à ce projet de traduction ? N'hésitez pas à nous contacter ou par MP !
 
 
 
 
Partenaires

Hébergement Web