Viadeo Twitter Google Bookmarks ! Facebook Digg del.icio.us MySpace Yahoo MyWeb Blinklist Netvouz Reddit Simpy StumbleUpon Bookmarks Windows Live Favorites 
Logo Documentation Qt ·  Page d'accueil  ·  Toutes les classes  ·  Toutes les fonctions  ·  Vues d'ensemble  · 

Cross-Compiling Qt for Embedded Linux Applications

Cross-compiling is the process of compiling an application on one machine, producing executable code for a different machine or device. To cross-compile a Qt for Embedded Linux application, use the following approach:

Note: The cross-compiling procedure has the configuration process in common with the installation procedure; i.e., you might not necessarily have to perform all the mentioned actions depending on your current configuration.

Step 1: Set the Cross-Compiler's Path

Specify which cross-compiler to use by setting the PATH environment variable. For example, if the current shell is bash, ksh, zsh or sh:

 export PATH=path/to/cross/compiler:$PATH

Step 2: Create a Target Specific qmake Specification

The qmake tool requires a platform and compiler specific qmake.conf file describing the various default values, to generate the appropriate Makefiles. The standard Qt for Embedded Linux distribution provides such files for several combinations of platforms and compilers. These files are located in the distribution's mkspecs/qws subdirectory.

Each platform has a default specification. Qt for Embedded Linux will use the default specification for the current platform unless told otherwise. To override this behavior, you can use the configure script's -platform option to change the specification for the host platform (where compilation will take place).

The configure script's -xplatform option is used to provide a specification for the target architecture (where the library will be deployed).

For example, to cross-compile an application to run on a device with an ARM architecture, using the GCC toolchain, run the configure script at the command line in the following way:

 ./configure -embedded arm -xplatform qws/linux-arm-g++ <other options>

If neither of the provided specifications fits your target device, you can create your own. To create a custom qmake.conf file, just copy and customize an already existing file. For example:

 cp path/to/QtEmbedded/mkspecs/qws/linux-mips-g++/...
    path/to/QtEmbedded/mkspecs/qws/linux-myarchitecture-g++/...

Note: When defining a mkspec for a Linux target, the directory must be prefixed with "linux-". We recommend that you copy the entire directory.

Note also that when providing you own qmake specifcation, you must use the configure script's -xplatform option to make Qt for Embedded Linux aware of the custom qmake.conf file.

Step 3: Provide Architecture Specific Files

Starting with Qt 4, all of Qt's implicitly shared classes can safely be copied across threads like any other value classes, i.e., they are fully reentrant. This is accomplished by implementing reference counting operations using atomic hardware instructions on all the different platforms supported by Qt.

To support a new architecture, it is important to ensure that these platform-specific atomic operations are implemented in a corresponding header file (qatomic_ARCH.h), and that this file is located in Qt's src/corelib/arch directory. For example, the Intel 80386 implementation is located in src/corelib/arch/qatomic_i386.h.

See the Implementing Atomic Operations documentation for details.

Step 4: Provide Hardware Drivers

Without the proper mouse and keyboard drivers, you will not be able to give any input to your application when it is installed on the target device. You must also ensure that the appropriate screen driver is present to make the server process able to put the application's widgets on screen.

Qt for Embedded Linux provides several ready-made mouse, keyboard and screen drivers, see the pointer handling, character input and display management documentation for details.

In addition, custom drivers can be added by deriving from the QWSMouseHandler, QWSKeyboardHandler and QScreen classes respectively, and by creating corresponding plugins to make use of Qt's plugin mechanism (dynamically loading the drivers into the server application at runtime). Note that the plugins must be located in a location where Qt will look for plugins, e.g., the standard plugin directory.

See the How to Create Qt Plugins documentation and the Plug & Paint example for details.

Step 5: Build the Target Specific Executable

Before building the executable, you must specify the target architecture as well as the target specific hardware drivers by running the configure script:

 cd path/to/QtEmbedded
 ./configure -embedded <architecture> -qt-kbd-<keyboarddriver>
             -qt-mouse-<mousedriver> -qt-gfx-<screendriver>

It is also important to make sure that all the third party libraries that the application and the Qt libraries require, are present in the tool chain. In particular, if the zlib and jpeg libraries are not available, they must be included by running the configure script with the -L and -I options. For example:

 cd path/to/QtEmbedded
 ./configure  <other options>
              -L /path/to/libjpeg/libraries -I /path/to/libjpeg/headers

The JPEG source can be downloaded from http://www.ijg.org/. The Qt for Embedded Linux distribution includes a version of the zlib source that can be compiled into the Qt for Embedded Linux library. If integrators wish to use a later version of the zlib library, it can be downloaded from the http://www.gzip.org/zlib/ website.

Then build the executable:

 cd path/to/myApplication
 qmake -project
 qmake
 make

That's all. Your target specific executable is ready for deployment.

See also:

Qt for Embedded Linux Architecture and Deploying Qt for Embedded Linux Applications.

Publicité

Best Of

Actualités les plus lues

Semaine
Mois
Année
  1. « Quelque chose ne va vraiment pas avec les développeurs "modernes" », un développeur à "l'ancienne" critique la multiplication des bibliothèques 53
  2. Les développeurs ignorent-ils trop les failles découvertes dans leur code ? Prenez-vous en compte les remarques des autres ? 17
  3. BlackBerry 10 : premières images du prochain OS de RIM qui devrait intégrer des widgets et des tuiles inspirées de Windows Phone 0
  4. Quelles nouveautés de C++11 Visual C++ doit-il rapidement intégrer ? Donnez-nous votre avis 10
  5. Adieu qmake, bienvenue qbs : Qt Building Suite, un outil déclaratif et extensible pour la compilation de projets Qt 17
  6. Apercevoir la troisième dimension ou l'utilisation multithreadée d'OpenGL dans Qt, un article des Qt Quarterly traduit par Guillaume Belz 0
  7. La rubrique Qt a besoin de vous ! 1
Page suivante

Le blog Digia au hasard

Logo

Déploiement d'applications Qt Commercial sur les tablettes Windows 8

Le blog Digia est l'endroit privilégié pour la communication sur l'édition commerciale de Qt, où des réponses publiques sont apportées aux questions les plus posées au support. Lire l'article.

Communauté

Ressources

Liens utiles

Contact

  • Vous souhaitez rejoindre la rédaction ou proposer un tutoriel, une traduction, une question... ? Postez dans le forum Contribuez ou contactez-nous par MP ou par email (voir en bas de page).

Qt dans le magazine

Cette page est une traduction d'une page de la documentation de Qt, écrite par Nokia Corporation and/or its subsidiary(-ies). Les éventuels problèmes résultant d'une mauvaise traduction ne sont pas imputables à Nokia. Qt 4.6
Copyright © 2012 Developpez LLC. Tous droits réservés Developpez LLC. Aucune reproduction, même partielle, ne peut être faite de ce site et de l'ensemble de son contenu : textes, documents et images sans l'autorisation expresse de Developpez LLC. Sinon, vous encourez selon la loi jusqu'à 3 ans de prison et jusqu'à 300 000 E de dommages et intérêts. Cette page est déposée à la SACD.
Vous avez déniché une erreur ? Un bug ? Une redirection cassée ? Ou tout autre problème, quel qu'il soit ? Ou bien vous désirez participer à ce projet de traduction ? N'hésitez pas à nous contacter ou par MP !
 
 
 
 
Partenaires

Hébergement Web