Viadeo Twitter Google Bookmarks ! Facebook Digg del.icio.us MySpace Yahoo MyWeb Blinklist Netvouz Reddit Simpy StumbleUpon Bookmarks Windows Live Favorites 
Logo Documentation Qt ·  Page d'accueil  ·  Toutes les classes  ·  Classes principales  ·  Annotées  ·  Classes groupées  ·  Modules  ·  Fonctions  · 

QML Video Shader Effects Example

The QML Video Shader Effects Example shows how ShaderEffect can be used to apply postprocessing effects, expressed in GLSL, to video and camera viewfinder content.

Overview

This example shows how a ShaderEffectItem can be used to apply postprocessing effects, expressed in GLSL, to QML VideoOutput items.

It also shows how native code can be combined with QML to implement more advanced functionality - in this case, C++ code is used to calculate the QML frame rate. This value is rendered in QML in a semi-transparent item overlaid on the video content.

Finally, this application demonstrates the use of different top-level QML files to handle different physical screen sizes. On small-screen devices, menus are by default hidden, and only appear when summoned by a gesture. Large-screen devices show a more traditional layout in which menus are displayed around the video content pane.

The following screenshots show shader effects being applied. In each case, the effect is implemented using a fragment shader.

Here we see an edge detection algorithm being applied to a video clip (Elephant's Dream from blender.org).

This image shows a page curl effect, applied to the same video clip.

Here we see a 'glow' effect (edge detection plus colour quantization) being applied to the camera viewfinder.

This image shows a 'lens magnification' effect applied to the viewfinder.

The application includes many more effects than the ones shown here - look for Effect*.qml files in the list above to see the full range.

Application structure

Shader effects can be applied to video or viewfinder content using ShaderEffectItem, as shown in the following example, which applies a wiggly effect to the content:

 import QtQuick 2.0
 import QtMultimedia 5.0

 Rectangle {
     width: 300
     height: 300
     color: "black"

     MediaPlayer {
         id: mediaPlayer
         source: "test.mp4"
         playing: true
     }

     VideoOutput {
         id: video
         anchors.fill: parent
         source: mediaPlayer
     }

     ShaderEffect {
         property variant source: ShaderEffectSource { sourceItem: video; hideSource: true }
         property real wiggleAmount: 0.005
         anchors.fill: video

         fragmentShader: "
             varying highp vec2 qt_TexCoord0;
             uniform sampler2D source;
             uniform highp float wiggleAmount;
             void main(void)
             {
                 highp vec2 wiggledTexCoord = qt_TexCoord0;
                 wiggledTexCoord.s += sin(4.0 * 3.141592653589 * wiggledTexCoord.t) * wiggleAmount;
                 gl_FragColor = texture2D(source, wiggledTexCoord.st);
             }
         "
     }
 }

In this application, the usage of the ShaderEffect and VideoOutput types is a bit more complicated, for the following reasons:

  • Each effect can be applied to either a VideoOutput or an Image item, so the type of the source item must be abstracted away from the effect implementation
  • For some effects (such as the edge detection and glow examples shown in the screenshots above), the transformation is applied only to pixels to the left of a dividing line - this allows the effect to be easily compared with the untransformed image on the right
  • Most effects have one or more parameters which can be modified by the user - these are controlled by sliders in the UI which are connected to uniform values passed into the GLSL code

The abstraction of source item type is achieved by the Content, which uses a Loader to create either a MediaPlayer, Camera or Image:

 import QtQuick 2.0

 Rectangle {
     ...
     Loader {
         id: contentLoader
     }

     ...
     function openImage(path) {
         console.log("[qmlvideofx] Content.openImage \"" + path + "\"")
         stop()
         contentLoader.source = "ContentImage.qml"
         contentLoader.item.source = path
     }

     function openVideo(path) {
         console.log("[qmlvideofx] Content.openVideo \"" + path + "\"")
         stop()
         contentLoader.source = "ContentVideo.qml"
         contentLoader.item.mediaSource = path
     }

     function openCamera() {
         console.log("[qmlvideofx] Content.openCamera")
         stop()
         contentLoader.source = "ContentCamera.qml"
     }

 }

Each effect is implemented as a QML item which is based on the Effect, which in turn is based on the ShaderEffect:

 import QtQuick 2.0

 ShaderEffect {
     property variant source
     property ListModel parameters: ListModel { }
     property bool divider: true
     property real dividerValue: 0.5
     property real targetWidth: 0
     property real targetHeight: 0
     property string fragmentShaderFilename
     property string vertexShaderFilename

     QtObject {
         id: d
         property string fragmentShaderCommon: "
             #ifdef GL_ES
                 precision mediump float;
             #else
             #   define lowp
             #   define mediump
             #   define highp
             #endif // GL_ES
         "
     }

     // The following is a workaround for the fact that ShaderEffect
     // doesn't provide a way for shader programs to be read from a file,
     // rather than being inline in the QML file

     onFragmentShaderFilenameChanged:
         fragmentShader = d.fragmentShaderCommon + fileReader.readFile(fragmentShaderFilename)
     onVertexShaderFilenameChanged:
         vertexShader = fileReader.readFile(vertexShaderFilename)
 }

The interface of the Effect allows for derived effects to specify the number of parameters which they support (and therefore the number of sliders which should be displayed), and whether a vertical dividing line should be drawn between transformed and untransformed image regions. As an example, here is the implementation of the pixelation effect. As you can see, the pixelation effect supports one parameter (which controls the pixelation granularity), and states that the divider should be displayed.

 import QtQuick 2.0

 Effect {
     parameters: ListModel {
         ListElement {
             name: "granularity"
             value: 0.5
         }
     }

     // Transform slider values, and bind result to shader uniforms
     property real granularity: parameters.get(0).value * 20

     fragmentShaderFilename: "shaders/pixelate.fsh"
 }

The main.qml file shows a FileOpen, which allows the user to select the input source and an EffectSelectionPanel item, which lists each of the available shader effects. As described above, a Content item is used to load the appropriate input and effect type. A Divider item draws the vertical dividing line, which can be dragged left / right by the user. Finally, a ParameterPanel item renders the sliders corresponding to each effect parameter.

Here is the source selection menu:

And here is the effect selection menu:

Calculating and displaying QML painting rate

The QML painting rate is calculated by the FrequencyMonitor class, which turns a stream of events (received via the notify() slot), into an instantaneous and an averaged frequency:

 class FrequencyMonitor : public QObject
 {
     Q_OBJECT
     Q_PROPERTY(qreal instantaneousFrequency READ instantaneousFrequency NOTIFY instantaneousFrequencyChanged)
     Q_PROPERTY(qreal averageFrequency READ averageFrequency NOTIFY averageFrequencyChanged)
 public:
     ...
     static void qmlRegisterType();

 public slots:
     Q_INVOKABLE void notify();
 };

The FrequencyMonitor class is exposed to QML like this

 void FrequencyMonitor::qmlRegisterType()
 {
     ::qmlRegisterType<FrequencyMonitor>("FrequencyMonitor", 1, 0, "FrequencyMonitor");
 }

and its data is displayed by defining a QML item called FrequencyItem, like this:

 import FrequencyMonitor 1.0

 Rectangle {
     id: root
     ...
     function notify() {
         monitor.notify()
     }

     FrequencyMonitor {
         id: monitor
         onAverageFrequencyChanged: {
             averageFrequencyText.text = monitor.averageFrequency.toFixed(2)
         }
     }

     Text {
         id: labelText
         anchors {
             left: parent.left
             top: parent.top
             margins: 10
         }
         color: root.textColor
         font.pixelSize: 0.6 * root.textSize
         text: root.label
         width: root.width - 2*anchors.margins
         elide: Text.ElideRight
     }

     Text {
         id: averageFrequencyText
         anchors {
             right: parent.right
             bottom: parent.bottom
             margins: 10
         }
         color: root.textColor
         font.pixelSize: root.textSize
     }
 }

The result looks like this:

All that remains is to connect the afterRendering() signal of the QQuickView object to a JavaScript function, which will eventually call frequencyItem.notify():

     QmlApplicationViewer viewer;

     ...
     QQuickItem *rootObject = viewer.rootObject();
     ...
     QObject::connect(&viewer, SIGNAL(afterRendering()),
                      rootObject, SLOT(qmlFramePainted()));

Files:

Images:

Cette page est une traduction d'une page de la documentation de Qt, écrite par Nokia Corporation and/or its subsidiary(-ies). Les éventuels problèmes résultant d'une mauvaise traduction ne sont pas imputables à Nokia. Qt 5.0-snapshot
Copyright © 2012 Developpez LLC. Tous droits réservés Developpez LLC. Aucune reproduction, même partielle, ne peut être faite de ce site et de l'ensemble de son contenu : textes, documents et images sans l'autorisation expresse de Developpez LLC. Sinon, vous encourez selon la loi jusqu'à 3 ans de prison et jusqu'à 300 000 E de dommages et intérêts. Cette page est déposée à la SACD.
Vous avez déniché une erreur ? Un bug ? Une redirection cassée ? Ou tout autre problème, quel qu'il soit ? Ou bien vous désirez participer à ce projet de traduction ? N'hésitez pas à nous contacter ou par MP !
 
 
 
 
Partenaires

Hébergement Web